West Bountiful -2016 Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. Our water source is Weber Basin Water.

The Drinking Water Source Protection Plan for West Bountiful is available for your review. It contains information about source protection zones, potential contamination sources and management strategies to protect our drinking water. Our sources have a low susceptibility to potential contamination. We have also developed management strategies to further protect our sources from contamination. Please contact us if you have questions or concerns about our source protection plan.

There are many connections to our water distribution system. When connections are properly installed and maintained, the concerns are very minimal. However, unapproved and improper piping changes or connections can adversely affect not only the availability, but also the quality of the water. A cross connection may let polluted water or even chemicals mingle into the water supply system when not properly protected. This not only compromises the water quality but can also affect your health. So, what can you do? Do not make or allow improper connections at your homes. Even that unprotected garden hose lying in the puddle next to the driveway is a cross connection. The unprotected lawn sprinkler system after you have fertilized or sprayed is also a cross connection. When the cross connection is allowed to exist at your home, it will affect you and your family first. If you'd like to learn more about helping to protect the quality of our water, call us for further information about ways you can help.

I'm pleased to report that our drinking water is safe and meets federal and state requirements.

If you have any questions about this report or concerning your water utility, please contact Blake Anderson at (801)292-4486. We want our valued customers to be informed about their water utility. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on first and third Tuesday of each month at 7 pm at the West Bountiful City Hall.

West Bountiful routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period January 1st and ending December 31st, 2016. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/l) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (nanograms/l) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

			TI				
The data present			e most recent testi	ing done in	ESULTS accordance with the ted by Weber Basi		s, not all sample results are from 2007. servancy District.
Contaminant	Violation Y/N	Level Detected ND/Low- High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
		M	ICROBIOL	OGICA	L CONTAMI	INANTS	*
Turbidity for Ground Water	N	Trans	NTU	N/A	5	2014	Soil runoff
Turbidity for Surface Water	N	0.04-0.08	NTU	NA	0.5 in at least 95% of the samples and must never exceed 5	2015	Soil Runoff
			RADIOAC	TIVE C	ONTAMINA	NTS	
Alpha Emitters	N	1	pCi/1	0	15	2015	Erosion of natural deposits
Combined Radium	N	2.4	pCi/1	0	5	2011	Erosion of natural deposits
Radium 226	N_	2.4	pCi/l	0	5	2011	Erosion of natural deposits
Radium 228	N	0.33	pCi/l	0	5	2015	Erosion of natural deposits
			INORGA	NIC CO	NTAMINAN	ITS	
Contaminant	Violation Y/N	Level Detected ND/Low- High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
Barium	N	43	ppb	2000	2000	2014	Discharge of drilling wastes; discharge from metal refineries; erosion of natura deposits
Copper	N	a. 468	ppb	1300	AL=1300	2013	Corrosion of household plumbing

a. 90% result b. # of sites that exceed AL		b. 0					systems, erosion of natural deposits; leaching from wood preservatives
Lead a. 90% result b. # of sites that exceed AL	N	a. 4 b. 0	ppt	0	AL=15000	2013	Corrosion of household plumbing systems; erosion of natural deposits
Nitrate	N	3300- 3180	ppb	10000	10000	2015	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium	N	25894- 41900	ppb	No MCLor MCLG has been established by EPA		2015	2014
Sulfate	N	19079- 55000	ppb	100000	1000000	2015	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills, runoff from cropland
TDS (Total Dissolved Solids)	N	361-416	ppm	1000	1000	2014	Erosion of natural deposits
			DISINFE	CTION	BYPRODUC	CTS	
Contaminant	Violation Y/N	Level Detected ND/Low- High	Unit Measurement	MCLG	MCL	Date Sampled	Likely Source of Contamination
TTHM [Total trihalomethanes]	N	ND- 34900	ppt	0	80000	2015	By-product of drinking water disinfection
Haloacetic Acids	N	ND- 27400	ppt	60000	60000	2015	By-product of drinking water disinfection
Chlorine	N	400	ppb	4000	4000	2015	Water additive used to control microbes
Volatile Orgai	nic Conta	minants					
Xylenes	N	ND-I	ppm	10	10	2015	Discharge from petroleum factories; discharge from chemical factories

All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or are man made. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Bountiful is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Please call our office if you have questions.

We at West Bountiful work around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.