2014 Consumer Confidence Report Data BRISTOL WATERWORKS VILLAGE OF, PWS ID: 23000505 ### **Water System Information** If you would like to know more about the information contained in this report, please contact Randy R Kerkman at (262) 857-2368. # Opportunity for input on decisions affecting your water quality Village of Bristol Board meets on the 2nd and 4th Mondays of each month at the Village Hall located at 19801 83rd street at 7:00 pm. #### **Health Information** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's safe drinking water hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Environmental Protection Agency's safe drinking water hotline (800-426-4791). # Source(s) of Water | Source ID | Source | Depth (in feet) | Status | |-----------|-------------|-----------------|--------| | 1 | Groundwater | 1155 | Active | | 2 | Groundwater | 55 | Active | | Source ID | Source | Depth (in feet) | Status | |-----------|-------------|-----------------|--------| | 3 | Groundwater | 1505 | Active | #### **Purchased Water** | PWS ID | PWS Name | |----------|-----------------------| | 23000461 | KENOSHA WATER UTILITY | To obtain a summary of the source water assessment please contact, Randy R Kerkman at (262) 857-2368. #### **Educational Information** The sources of drinking water, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally- occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which shall provide the same protection for public health. #### **Definitions** #### Term Definition AL Action Level: The concentration of a contaminant which, if exceeded, triggers | Term | Definition | |-----------|--| | | treatment or other requirements which a water system must follow. | | MCL | Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | MCLG | Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MFL | million fibers per liter | | MRDL | Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MRDLG | Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | mrem/year | r millirems per year (a measure of radiation absorbed by the body) | | NTU | Nephelometric Turbidity Units | | pCi/l | picocuries per liter (a measure of radioactivity) | | ppm | parts per million, or milligrams per liter (mg/l) | | ppb | parts per billion, or micrograms per liter (ug/l) | | ppt | parts per trillion, or nanograms per liter | | ppq | parts per quadrillion, or picograms per liter | | TCR | Total Coliform Rule | | TT | Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | # **Detected Contaminants** Your water was tested for many contaminants last year. We are allowed to monitor for some contaminants less frequently than once a year. The following tables list only those contaminants which were detected in your water. If a contaminant was detected last year, it will appear in the following tables without a sample date. If the contaminant was not monitored last year, but was detected within the last 5 years, it will appear in the tables below along with the sample date. ### **Disinfection Byproducts** | Contaminant (units) | Site | MCL | MCLG | Level
Found | Range | Sample
Date (if
prior to
2014) | Violation | Typical Source of
Contaminant | |---------------------|------|-----|------|----------------|-------|---|-----------|----------------------------------| | HAA5 (ppb) | D-4 | 60 | 60 | 3 | 3 | | No | By-product of | | Contaminant (units) | Site | MCL | MCLG | Level
Found | Range | Sample
Date (if
prior to
2014) | Violation | Typical Source of
Contaminant | |---|------|-----|------|----------------|-------|---|-----------|---| | Telephone Control of the | | | | | | | | drinking water chlorination | | TTHM (ppb) | D-4 | 80 | O | 10.5 | 10.5 | | No | By-product of drinking water chlorination | # **Inorganic Contaminants** | Contaminant
(units) | Site | MCL | MCLG | Level
Found | Range | Sample
Date (if
prior to
2014) | Violation | Typical Source of
Contaminant | |------------------------|------|-----|------|----------------|-----------------------|---|-----------|--| | ARSENIC
(ppb) | | 10 | n/a | 2 | 0 - 2 | | No | Erosion of natural
deposits; Runoff from
orchards; Runoff from
glass and electronics
production wastes | | BARIUM
(ppm) | | 2 | 2 . | 0.076 | 0.032 -
0.076 | | No | Discharge of drilling
wastes; Discharge
from metal refineries;
Erosion of natural
deposits | | FLUORIDE
(ppm) | | 4 | 4 | 1.3 | 0.5 - 1.3 | | No | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories | | NICKEL (ppb) | | 100 | | 7.0000 | 0.8600
-
7.0000 | | No | Nickel occurs naturally in soils, ground water and surface waters and is often used in electroplating, stainless steel and alloy products. | | SODIUM (ppm) | | n/a | n/a | 21.00 | 14.00 -
21.00 | | No | n/a | | Contaminant (units) | Action
Level | MCLG | 90th
Percentile
Level
Found | # of
Results | Sample
Date (if
prior to
2014) | Violation | Typical Source of
Contaminant | |---------------------|-----------------|------|--------------------------------------|--|---|-----------|--| | COPPER (ppm) | AL=1.3 | 1.3 | 0.4900 | 0 of 10 results were above the action level. | | No | Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives | | LEAD (ppb) | AL=15 | O | 2.10 | 0 of 10 results were above the action level. | | No | Corrosion of
household
plumbing systems;
Erosion of natural
deposits | #### **Radioactive Contaminants** | Contaminant
(units) | Site | MCL | MCLG | Level
Found | Range | Sample
Date (if
prior to
2014) | Violation | Typical Source of Contaminant | |--|------|-----|------|----------------|--------------|---|-----------|-------------------------------| | GROSS ALPHA,
EXCL. R & U
(pCi/l) | | 15 | 0 | 7.8 | 0.0 - 7.8 | | No | Erosion of natural deposits | | RADIUM, (226 + 228) (pCi/l) | | 5 | 0 | 4.0 | 1.4 -
4.0 | | No | Erosion of natural deposits | | GROSS ALPHA,
INCL. R & U
(n/a) | | n/a | n/a | 7.8 | 0.0 -
7.8 | | No | Erosion of natural deposits | #### Additional Health Information If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Bristol Waterworks Village Of is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead. #### **Purchased Water** Our water system purchases water from KENOSHA WATER UTILITY. In addition to the detected contaminants listed above, these are the results from KENOSHA WATER UTILITY. ## Information on Monitoring for Cryptosporidium and Radon Our water system did not monitor our water for cryptosporidium or radon during 2014. We are not required by State or Federal drinking water regulations to do so. # Kenosha Water Utility 2014 Drinking Water Quality Report (CCR Data for Wholesale Customers) | Circtance (Haite) | MCL or | MCLG or | | Range/ | Year | | | |-----------------------------|----------|--|---------------------------|---------------|--------|--|---| | Superiorie (Oillis) | {MRDL} | {MRDLG} | Level Found | Comments | Tested | Violation | lypical Source of Contaminant | | Microbiological Results | | | | | | | | | | < 5% of | | | | | | | | Total Coliform Bacteria | monthly | 0 | 1% | 1% | 2014 | No | Naturally present in the environment; E.coli is present in human and animal | | (% positive) | samples | | | | | | waste | | Disinfection Results | | | | | | | | | Total Chlorine (ppm) | {4} | {4} | 1.26 | 0.95 - 1.26 | 2014 | No | Drinking water disinfectant | | Haloacetic Acids (ppb) | 9 | 9 | 12 | 7 - 18 | 2014 | No | By-product of drinking water Chlorination | | Total Trihalomethanes (ppb) | 80 | 0 | 25 (avg) | 12.2 - 45.7 | 2014 | No | By-product of drinking water Chlorination | | Bromodichloromethane (ppb) | 80 | 0 | 8.2 (avg) | 4.9 - 15 | 2014 | S
S | By-product of drinking water Chlorination | | Bromoform (ppb) | 80 | 0 | 0.3 | ND - 0.60 | 2014 | No | By-product of drinking water Chlorination | | Chloroform (ppb) | 80 | 0 | 10.8 (avg) | 3.6 - 23 | 2014 | No | By-product of drinking water Chlorination | | Dibromochloromethane (ppb) | 80 | 0 | 4.5 (avg) | 3.1 - 7.1 | 2014 | o _N | Bv-oroduct of drinking water Chlorination | | Regulated Inorganic Results | | | | | | Constant and Const | | | Antimony (ppb) | 9 | 9 | Q | CN | 2014 | 2 | Discharge from petroleum refineries, fire retardants, ceramics, electronics, | | Arsenic (ppb) | 10 | N/A | 0.65 | 0.65 | 2014 | No | Erosion of natural deposits | | Barium (nnm) | , | ٠ | | | | | Discharge of drilling wastes; Discharge from metal refineries; Erosion of | | Cadmium (pub) | ח ח | 7 | 0.022 | 0.022 | 5014 | ON : | natural deposits | | Chromium (anh) | 00, | 00, | QV. | ON : | 4107 | NO | Erosion of natural deposits | | monimum (ppp) | TOO | 100 | ON | ON | 2014 | No | Erosion of natural deposits | | Copper (ppm) | 1.3 (AL) | 1.3 | 0.1 (90th
percentile) | 0.002 - 0.260 | 2014 | 8 | Corrosion of household plumbing systems; Erosion of natural deposits; leaching from wood preservatives | | Cyanide (ppb) | 200 | 200 | 6 | ი | 2014 | N _O | Discharge from Steel/Metal factories; Discharge from plastic and fertilizer factories | | | | ************************************** | | | | | Erosion of natural deposits; Water additive that promotes strong teeth; | | Fluoride (ppm) | 4 | 4 | 69.0 | 69.0 | 2014 | No | discharge from fertilizer and aluminum factories | | Lead (ppb) | 15 (AL) | 0 | 6.20 (90th
percentile) | 1.5 - 100 | 2014 | 8
0 | Corrosion of household plumbing systems; Erosion of natural deposits | | Nickel (ppb) | 100 | N/A | 0.86 | 0.86 | 2014 | Š | Nickel occurs naturally in soils, ground water and surface waters and is often used in electroplating, stainless steel and alloy products | | Nitrate as N (ppm) | 10 | 10 | 0.54 | 0.54 | 2014 | N
S | Runoff from fertilizer use; Leaching from septic tanks; Erosion of natural deposits | | Sodium (ppm) | N/A | N/A | 15 | 15 | 2014 | N/A | N/A | | Radioactive Result | | | | | | | | | Radium (226+228) (pCi/L) | 2 | 0 | 1.5 | 1.5 | 2014 | No | Erosion of natural deposits | # Kenosha Water Utility 2014 Drinking Water Quality Report (CCR Data for Wholesale Customers) | C. hoton of History | MCL or | MCLG or | | Range/ | Year | | を見るないないとのである。 100mm 10 | |---|---------------|---------|-------------|-----------------|--------|-----------|--| | Substance (Onits) | {MRDL} | {MRDLG} | Level Found | Comments | Tested | Violation | Typical Source of Contaminant | | Unregulated Contaminant Monitoring Program | itoring Progr | am | | | | | | | Chromium 6 (ppb) | N/A | N/A | 0.247 | 0.190 - 0.247 | 2013 | N/A | Naturally occurring element; used in making steel and other alloys. | | Chromium Total (ppb) | N/A | N/A | 1.220 | 0.241 - 1.220 | 2013 | N/A | Naturally occurring element; used in making steel and other alloys. | | Molybdenum (ppb) | N/A | N/A | 1.1873 | ND - 1.1873 | 2013 | N/A | Naturally occurring element found in ores and present in plants, animals and bacteria | | Strontium (nob) | 9/2 | V/N | 325 7.01 | 326 761 363 711 | 6100 | 4/14 | Naturally occurring element. Has been used in the faceplate glass of | | Vanadium (ppb) | A/N | A/N | 0.318 | 0.2407-0218 | | V/N | Cathodest ay tube televisions to block X-Lay emissions. Naturally occurring alomostal motal | | Temperature (°F) | N/A | N/A | 62 | 33-67 | 2012 | N/A | | | Other Monitored Parameters | | | | | | | | | Sulfate (ppm) | N/A | N/A | 28 | 28 | 2014 | N/A | N/A | | Ortho-phosphate (ppm) | N/A | N/A | 0.165 (avg) | 0.12 - 0.21 | 2014 | N/A | Water additive to reduce corrosion of household plumbing systems | | Total Organic Carbon (ppm) | 11 | N/A | 1.6(avg) | 0.99 - 2.0 | 2014 | N/A | N/A | | Furbidity (NTU) | < 0.30 | N/A | 0.065 | 0.023 - 0.065 | 2014 | No | Erosion of natural deposits | | Alkalinity (ppm) | N/A | N/A | 107 (avg.) | 101 - 123 | 2014 | N/A | N/A | | Conductivity (µS/cm) | N/A | N/A | 302 (avg) | 220 - 367 | 2014 | N/A | N/A | | Total Hardness (ppm) | N/A | N/A | 139 (avg.) | 134 - 154 | 2014 | N/A | N/A | | pH (pH Units) | N/A | N/A | 7.69 (avg.) | 7.44 - 7.98 | 2014 | N/A | N/A | **DEFINITIONS** AL: Action Level The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Action levels are reported at the 90th percentile from homes at greatest risk. MCL: Maximum Contaminant Level The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment [MRDL]: Maximum Residual Disinfectant Level The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of MCLG: Maximum Contaminant Level Goal The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. microbial contaminants. (MRDLG): Maximum Residual Disinfectant Level Goal The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination. 17: Treatment Technique A required process intended to reduce the level of a contaminant in drinking water. Abbreviations: avg: average N/A: Not Applicable ND: Not Detected pCi/L: picocuries per liter NTU: Nephelometric Turbidity Units ppm: parts per million (mg/L) ppb: parts per billion (µg/L) µS/cm: microsiemens per centimeter