

Local Energy History & The Foundation for our Energy Future

Renewable Energy in the Mad River Valley

Maclay Architects CHOICES IN SUSTAINABILITY

Net-Zero Worlds

MaclayArchitects CHOICES IN SUSTAINABILITY

Evolution & Worlds

MaclayArchitects CHOICES IN SUSTAINABILITY

Settlement / Organisms / Ecosystems

"We shape our buildings, and afterwards our buildings shape us."

Winston Churchill

The Non Net-Zero Tradition

MaclayArchitects
CHOICES IN SUSTAINABILITY

Global Challenges & Our Buildings & Community's Impacts economy, energy, environment, equity & population

Peak Oil

Historical World Oil Price

Projected Oil Price Based on Historical Growth

Vermont Historical Fuel Price

Get ready

for a renewable world

The Evolution of Energy and Settlement Patterns

Farming/Agriculture

Coal

Hunters / Gatherers
The Evolution of Energy and Settlement Patterns

MaclayArchitects
CHOICES IN SUSTAINABILITY

Agricultural Villages The Evolution of Energy and Settlement Patterns

Mills & Small Towns

The Evolution of Energy and Settlement Patterns

Small Cities & Trade

The Evolution of Energy and Settlement Patterns

Large Cities & Coal
The Evolution of Energy and Settlement Patterns

MaclayArchitects
CHOICES IN SUSTAINABILITY

Suburbs & Oil

The Evolution of Energy and Settlement Patterns

Evolution & Worlds in Vermont

Mad River Watershed

Mad River Valley Morphology / Ecosystems

MaclayArchitects
CHOICES IN SUSTAINABILITY

Land Use: Hunter / Gatherer
Pre 1750s

Land Use and Life in the Hunter / Gatherer Era

Flow: Hunter / Gatherer Pre 1750s

IN		OUT
	Energy	
	Food	
	Products	
Î	Population	

Land Use: Subsistence Farming c. 1800-1850

Energy in the Subsistence Farming Era

MaclayArchitects
CHOICES IN SUSTAINABILITY

Flow: Subsistence Farming c. 1800-1850

IN		OUT
	Energy Food	
	Products Population	

Land Use: Milltowns c 1850-1900

Milltown / Centers

Agricultural Hamlet

School house

Early Road

Dam

Energy in the Mill Era

Agriculture in the Mill Era

MaclayArchitects
CHOICES IN SUSTAINABILITY

Industry in the Mill Era

Life in the Mill Era

MaclayArchitects CHOICES IN SUSTAINABILITY

Flow: Milltowns c. 1850 -1900

IN		OUT
	Energy	
	Food	
	Products	-
	Population	

Land Use: Coal Era c 1900 - 1950

- Commerce/Retail
- Products
- Agriculture
- ---- Hydroelectric dam
 - Roads
- ~ Railroad
 - Public Center

Industry in the Coal Era

Agriculture in the Coal Era

Flow: Coal Era c. 1900 – 1950

IN		OUT
	Energy	
	Food	
	Products	-
	Population	

Land Use: Oil Era c 1950 - 2010

Commerce/Retail

Products

Agriculture

---- Hydroelectric dam

Roads

Railroad

Recreation

Public Center

Forests

MaclayArchitects
CHOICES IN SUSTAINABILITY

Transportation In the Oil Era

MaclayArchitects
CHOICES IN SUSTAINABILITY

Agriculture In the Oil Era

Recreation in the Oil Era

Flow: Oil Era c. 1950 - 2010

IN		OUT
	_	
	Energy	
	Food	-
	Products	
	Population	

Settlement Patterns: Oil Era All Building Locations

- Rise in the cost of energy
- 80-90% reduction in energy consumption over typical building & community use
- On-site renewables power the buildings smart grid
- Pedestrian communities, mixed use, local food, local industry, mass transit, community oriented

MaclayArchitects

MaclayArchitects
CHOICES IN SUSTAINABILITY

Land Use: Renewable Era? c. 2010 - ?

- Regional Center
- Village/Valley Centers
- ✗ Neighborhood Centers
- Wind Turbines
- Living Machines
- Methane Digesters
- District Biomass Heating
- Mass Transit Bussing
 - Bike Path
- Recreational Center
- Hydroelectric Dam
 - Photovoltaics
- Railroad
 Agricultural

Energy in the Smart Renewable Era Dispersed, renewably based

Agriculture in the Smart Renewable Era

MaclayArchitects
CHOICES IN SUSTAINABILITY

Industry in the Smart Renewable Era Natural Resource Based

Recreation in Smart Renewable Era

Transportation in Smart Renewable Era

Flow: Renewable Era?

IN		OUT
	Energy	\Rightarrow
-	Food	-
-	Products	-
	Population	

A Net-Zero Putney School Campus

Phase	Cost for Efficiency Upgrades	Cost for BioMass Systems	Co	sts for PV's	Costs for Solar Hot Water	osts for Air ource Heat Pumps	Т	otal Cost
Phase One, Initial [1]	\$ 1,850,000	\$ 40,000	\$	-			\$	1,900,000
Phase One, Final [2]	\$ 7,400,000		\$	1,940,000	\$ 70,000		\$	9,400,000
Phase Two [3]		\$ 1,000,000	\$	1,940,000	\$ 225,000	\$ 96,000	\$	3,300,000
Phase Three [4]			\$	1,940,000		\$ 2,675,000	\$	4,600,000
Total	\$ 9,250,000	\$ 1,040,000	\$	5,820,000	\$ 295,000	\$ 2,771,000	\$ 1	19,200,000

Estimating Energy Usage of the Mad River Valley – Path 1:

Total Electric Usage in the Mad River Valley
Residential & Commercial Customers

Fayston: 5,600,000 kWh
Moretown: 8,600,000 kWh
Waitsfield: 16,300,000 kWh
Warren: 35,900,000 kWh

Total MRV: 66,400,000 kWh

Vermont total electric usage = 5,852,165 MWh MRV makes up only 1.1% of total VT electric usage

Estimating Energy Usage of the Mad River Valley – Path 1:

A Net-Zero Mad River Valley

Total Energy Estimates for the Mad River Valley

Electric Load: 40% 66,400,000 kWh Transportation: 33% 54,800,000 kWh Heating & Other: 27% 44,800,000 kWh

Total Energy Load: 166,000,000 kWh

or 567,000,000 kBTUs

Estimating Energy Usage of the Mad River Valley – Path 2:

Vermont Energy Usage per Capita = 254,500 kbtu or 74,568

kWh

** includes all energy sources: electricity, heating and transportation

Population of the Mad River Valley

Fayston: 1,240 residents
Moretown: 1,724 residents
Waitsfield: 1,692 residents
Warren: 1,729 residents

Total MRV: 6,385 residents

Total Energy Load: 476,000,000 kWh

or 1,625,000,000 kBTUs

Energy Usage of the Mad River Valley

MRV Total Energy Estimate Range:

Path 1 Estimates: 165,000,000 kWh

or 562,000,000 kBTUs

Path 2 Estimates: 476,000,000 kWh

or 1,625,000,000 kBTUs

Electricity: 66,000,000 kWh

Heating: 45,000,000 – 244,000,000 kWh Transportation: 54,000,000 – 158,000,000 kWh

MRV Total Estimate: 300,000,000 kWh

or 1,025,000,000 kBTUs

A Net-Zero Mad River Valley

What does 300,000,000 kWh or 1.025 trillion kBTUs mean?

176,000 barrels of oil 73,000 cords of wood, 73,000 acres of woodland 256,400 kW of installed PV, 1500 acres or 2.4 square miles 36 wind turbines (2.3 Mw with 100 meter blades) assuming a wind speed of 7.5 mps, requiring ridgeline placement

A Net-Zero Mad River Valley

With energy conservation we can realistically expect to reduce energy loads by around 25%.

We would then need:

132,000 barrels of oil
55,000 cords of wood, 55,000 acres of woodland
192,300 kW of installed PV, 1150 acres or 1.8 square miles
27 wind turbines (2.3 Mw with 100 meter blades)
assuming a wind speed of 7.5 mps, requiring ridgeline placement

Living Space Improvements for Energy & Flooding

Eliminate Food for Mold:

- Spray foam insulation
- Rigid insulation on wood and paper products

Basement Improvements for Energy & Flooding

- Eliminate oil boilers
- Design for minimal flooding impact

MaclayArchitects
CHOICES IN SUSTAINABILITY

Sustainable Communities in a Net-Zero Mad River Valley

Is it really possible?

MaclayArchitects
CHOICES IN SUSTAINABILITY