

City of Helena

Emergency Operations Plan

For

Pandemic Influenza

Table of Contents

Introduction	
General Information	
Pandemic Influenza Phases	4
Federal Role	7
State Role	8
State Health Officer	
Vaccine and Antiviral Priority Groups	9
Mass Casualty	11
Communications	12
Workforce Support / Occupational Health	12
Infection Control	13
Appendix A: Influenza Infection Control Measures	14
Appendix B: Pandemic Influenza Overview	15
Antiviral Recommendations	17
Surveillance	17
Appendix C. Risk Communications Sample Messages	18
Gathering Supporting Facts:	18
Contact Information	19

Introduction

This emergency preparedness planning document addresses how the City of Helena responds to pandemic influenza through its Emergency Operations Plan (EOP). This document will be periodically reviewed and updated as necessary to ensure that the information contained is consistent with current knowledge and changing infrastructure.

Before, during, and after a pandemic influenza outbreak, the City of Helena has a responsibility to ensure the continuation and delivery of essential public services and providing for the emergency needs of the population.

General Information

Advanced planning for emergency response could save lives and prevent substantial economic loss.

The following assumptions are made:

- 1. Although pandemic influenza strains have emerged mostly from areas of Eastern Asia, variants with pandemic potential may be anywhere.
- 2. Helena and its neighboring jurisdictions may be affected simultaneously.
- 3. A pandemic will pose significant threats to health and non-health infrastructure due to widespread absenteeism.
- 4. Effective prevention and therapeutic measures, including, vaccines and antiviral medications will be in short supply.
- 5. There may be critical shortages of health care resources, such as, staffed hospital beds, mechanical ventilators, morgue capacity, and other resources.
- 6. The annual influenza vaccination program will remain a cornerstone of prevention.
- 7. Alabama Department of Public Health will take the lead in distributing influenza vaccine in the event of a pandemic.
- 8. An effective response to pandemic influenza will require coordinated efforts of a wide variety of organizations, including, public, private, health, and non health related.
- 9. Infection control measures, such as isolating the sick, screening travelers, and reducing the number of public gatherings, may help to slow the spread of influenza early in the pandemic period.
- 10. Federal and State declarations of emergency will change legal and regulatory aspects of providing public health services during a pandemic.

Pandemic Influenza Phases

The World Health Organization (WHO) and the CDC have defined phases of pandemic influenza in order to assist with planning and response activities in states. Identification and declaration of the stages outlined in table 1 will be done at the national level. Activities that will be conducted during each phase of pandemic influenza are listed in the ADPH Plan, appendices C, D, and E.

Table 1. Pandemic Influenza Phases

Phase	Definition
Novel	A novel virus is detected in one or more humans and there is little or no
Virus Alert	immunity in the general population. There is potential for a pandemic, but
	it is not inevitable.
Pandemic	The novel virus demonstrates sustained person-to-person transmission and
Alert	causes multiple cases in the same geographic area.
Pandemic	The novel virus causes unusually high rates of morbidity and/or mortality
Imminent	in multiple, widespread geographic areas.
Pandemic	Further spread of the virus occurs with involvement of multiple continents.
Second	Epidemic activity recurs within several months following the initial wave
Wave	of infection.
Pandemic	Successive pandemic waves cease and a return of the more typical
Over	influenza cycle occurs.

According to CDC's FluAid calculations, Alabama can expect the following based on population, the number of potential deaths, hospitalizations, outpatient visits, and impact on resources.

Population (Numbers and Distribution)

	0-18 yrs	19-64 yrs	65+ yrs	Total	% Total
Non-high risk	1,003,119	2,299,621	336,585	3,639,325	84.26
High risk	68,589	386,851	224,389	679,829	15.73
Totals	1,071,708	2,686,472	560,974	4,319,154	100

Deaths (Number of Cases)

Gross attack rates | Distribution by age group (% of total): Most likely

	15%	25%	35%		% High Risk	%Total
0-18 yrs most likely	17	28	39	0-18 yrs	0	1
Minimum	10	16	23			
Maximum	232	387	542			
19-64 yrs most likely	841	1,401	1,961	19-64 yrs	41	47
Minimum	120	200	281			
Maximum	1,578	2,630	3,682			
65+ most likely	920	1,535	2,146	65+ yrs	42	52
Minimum -	892	1,487	2,081			
Maximum	1,141	1,901	2,662			
Total: Most likely	1,778	2,962	4,146	Totals	83	100
Total Minimum	1,022	1,703	2,385			
Total Maximum	2,951	4,918	6,886	·		

Hospitalization (Number of Cases)

):Gross attack rates				Distribution by age group (% of total): Most likely		
	15%	25%	35%		% High Risk	% Total
0-18 yrs most likely	300	500	700	0-18 yrs	1	4
Minimum	148	246	345		ļ	
Maximum	1,259	2,099	2,939			
19-64 yrs most likely	4,966	8,276	11,586	19-64 yrs	10	64
Minimum	727	1,531	2,144			
Maximum	5,421	9,035	12,649			
65+ yrs most likely	2,452	4,087	5,722	65+ yrs	20	32
Minimum	1,753	2,922	4,090			
Maximum	3,100	5,167	7,234			
Total: Most likely	7,718	12,863	18,008	Totals	31	100
Total: minimum	2,628	4,699	6,579			
Total maximum:	9,780	16,301	22,829			

Outpatient Visits (Number of Cases)

Gross attack rates	Distribution by age gro of total): Most likely	up (%				
Tates	15%	25%	35%		% High Risk	% Total
0-18 yrs most likely	95,078	158,463	221,848	0-18 yrs	3	27
Minimum	79,430	132,383	185,337			
Maximum	110,725	184,542	258,359			
19-64 yrs most likely	207,284	345,473	483,663	19-64 yrs	8	60
Minimum	148,831	248,051	347,271			
Maximum	316,386	527,310	738,233			
65+ yrs	43,546	72,576	101,606	65+ yrs	5	13
Minimum	41,091	68,486	95,880			
Maximum	67,597	112,662	157,727			
Total: Most likely	345,908	576,512	807,117	Totals	16	100
Total:	269,352	448,920	628,488			
Total: maximum	494,708	824,514	1,154,319			-

Impact On Resources

Gross attack rates			<u> </u>
	15%	25%	35%
Hospital beds:			
% capacity (most likely)	37	61	86
% capacity (maximum)	47	78	109
Outpatient visits:			
% capacity (most likely)	2	3	4
% capacity (maximum)	3	4	6
Morgue capacity:			
% capacity (most likely)	74	123	173
% capacity (maximum)	123	205	287

Federal Role

An influenza pandemic will represent a national health emergency requiring coordination of response activities. As outlined in Homeland Security Presidential Directive 5, the Department of Homeland Security has primary responsibility for coordinating domestic incident management and will coordinate all non-medical support and response actions across all federal departments and agencies. Health and Human Services (HHS) will coordinate the overall public health and medical emergency response efforts across all federal departments and agencies. Authorities exist under the Public Health Service Act for the HHS Secretary to declare an emergency and to coordinate response functions. In addition, the President can declare an emergency activating the Federal Response Plan, in accordance with the Stafford Act, under which HHS has lead authority for Emergency Support Function # 8 (ESF8).

HHS response activities will be coordinated in the Office of the Assistant Secretary for Public Health Emergency Preparedness in collaboration with the Office of the Assistant Secretary for Public Health and Science and will be directed through the Secretary's Command Center. The Command Center will maintain communication with HHS agency emergency operations centers and with other departments. HHS agencies will coordinate activities in their areas of expertise. Chartered advisory committees will provide recommendations and advise. Expert reviews and guidance also may be obtained from committees established by the National Academy of Sciences, Institute of Medicine or in other forums.

State Role

States are individually responsible for coordination of the pandemic influenza response within and between their jurisdictions. Specific Alabama Department of Public Health responsibilities include:

- Identify public and private sector partners needed for effective planning and response.
- Develop and enhance key components of pandemic influenza preparedness plan: surveillance, distribution of vaccine and antivirals, and communications.
- Integrate pandemic influenza planning with other planning activities conducted under CDC and Health Resources and Services' Administration (HRSA) Emergency Preparedness Cooperative Agreements.
- Coordinate with public health areas to ensure development of local plans as called for by the state plan and to provide resources, such as templates to assist in the planning process.
- Coordinate with the Alabama Department of Agriculture and Industry (ADAI) for zoonotic health issues related to pandemic influenza.
- Develop data management systems needed to implement components of the plan.
 Assist to public health areas and the Alabama Hospital and Nursing Home
 Association Preparedness Program in exercising plans.

State Health Officer

Several sections within the Code of Alabama give the State Health Officer and the State Committee of Public Health (SCPH) the authority to perform certain acts to protect the health of citizens. The SCPH and the State Health Officer will use this authority judiciously to best meet the needs of the citizens of the city as dictated by the situation.